Comparison of Texture Features Based on Gabor Filters

نویسندگان

  • Peter Kruizinga
  • Nicolai Petkov
  • Simona E. Grigorescu
چکیده

Texture features that are based on the local power spectrum obtained by a bank of Gabor filters are compared. The features differ in the type of nonlinear post-processing which is applied to the local power spectrum. The following features are considered: Gabor energy, complex moments, and grating cell operator features. The capability of the corresponding operators to produce distinct feature vector clusters for different textures is compared using two methods: the Fisher (1923) criterion and the classification result comparison. Both methods give consistent results. The grating cell operator gives the best discrimination and segmentation results. The texture detection capabilities of the operators and their robustness to nontexture features are also compared. The grating cell operator is the only one that selectively responds only to texture and does not give false response to nontexture features such as object contours.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet

  Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...

متن کامل

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

Neural network-based segmentation of textures using Gabor features

The effectiveness of Gabor filters for texture segmentation is well known. In this paper, we propose a texture identification scheme, based on a neural network (NN) using Gabor features. The features are derived from both the Gabor cosine and sine filters. Through experiments, we demonstrate the effectiveness of a NN based classifier using Gabor features for identifying textures in a controlled...

متن کامل

Texture Classification Using Windowed Fourier Filters

We define a distance between textures for texture classification from texture features based on windowed Fourier filters. The definition of the distance relies on an interpretation of our texture attributes in terms of spectral density when the texture can be considered as a Gaussian random field. The distance between textures is then defined as a symmetrized Kullback distance which is a simple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 1999